S.V.K.P. & Dr.K.S.RAJU A&S COLLEGE(A), PENUGONDA-534320.

I B.Sc.: Physics Semester-I

Paper I – MECHANICS, WAVES AND OSCILLATIONS

BSc	Semester: I	Credits: 4
Course: 1	Mechanics, Waves and Oscillations	Hrs/Wk: 4

UNIT I:

Mechanics of Particles: Review of Newton's Laws of Motion, Motion of variable mass system, Motion of a rocket, Multistage rocket, Concept of impact parameter, scattering cross-section, Rutherford scattering-Derivation.

Mechanics of Rigid bodies: Rigid body, rotational kinematic relations, Equation of motion for a rotating body, Angular momentum and Moment of inertia tensor, Euler equations, Precession of a spinning top, Gyroscope, Precession of the equinoxes

UNIT II:

Motion in a Central Force Field: Central forces, definition and examples, characteristics of central forces, conservative nature of central forces, Equation of motion under a central force, Kepler's laws of planetary motion- Proofs, Motion of satellites, Basic idea of Global Positioning System (GPS), weightlessness, Physiological effects of astronauts

UNIT III:

Relativistic Mechanics: Introduction to relativity, Frames of reference, Galilean transformations, absolute frames, Michelson-Morley experiment, negative result, Postulates of Special theory of relativity, Lorentz transformation, time dilation, length contraction, variation of mass with velocity, Einstein's mass-energy relation.

UNIT IV:

Undamped, Damped and Forced oscillations: Simple harmonic oscillator and solution of the differential equation, Damped harmonicoscillator, Forced harmonic oscillator — Their differential equations and solutions, Resonance, Logarithmic decrement, Relaxation time and Quality factor.

Coupled oscillations: Coupled oscillators - introduction, Two coupled oscillators, Normal coordinates and Normal Modes.

UNIT V:

Vibrating Strings: Transverse wave propagation along a stretched string, General solution of wave equation and its significance, Modes of vibration of stretched string clamped at ends, Overtones and Harmonics.

Ultrasonic's: Ultrasonics, General Properties of ultrasonic waves, Production of ultrasonics by piezoelectric and magnetostriction methods, Detection of ultrasonics, Applications of ultrasonic waves, SONAR

S.V.K.P. & Dr.K.S.RAJU A&S COLLEGE(A), PENUGONDA-534320.

I B.Sc.: Physics Semester-II

Paper II - WAVE OPTICS

B Sc	Semester: 2	Credits: 4
Course: 2	Wave Optics	Hrs/Wk: 4

UNIT I: Interference of light: (12hrs)

Introduction, Conditions for interference of light, Interference of light by division of wave front and amplitude, Phase change on reflection- Stokes' treatment, Lloyd's single mirror. Interference in thin films: Plane parallel and wedge- shaped films, colours in thin films, Newton's rings in reflected light-Theory and experiment, Determination of wavelength of monochromatic light, Michelson interferometer and determination of wavelength.

UNIT II: Diffraction of light:(12hrs)

Introduction, Types of diffraction: Fresnel and Fraunhoffer diffractions, Distinction between Fresnel and Fraunhoffer diffraction, Fraunhoffer diffraction at a single slit, Plane diffraction grating, Determination of wavelength of light using diffraction grating, Resolving power of grating, Fresnel's half period zones, Explanation of rectilinear propagation of light, Zone plate, comparison of zone plate with convex lens.

UNIT III: Polarisation of light: (12hrs)

Polarized light: Methods of production of plane polarized light, Double refraction, Brewster's law, Malus law, Nicol prism, Nicol prism as polarizer and analyzer, Quarter wave plate, Half wave plate, Plane, Circularly and Elliptically polarized light-Production and detection, Optical activity, Laurent's half shade polarimeter: determination of specific rotation.

UNIT IV: Aberrations and Fibre Optics: (12hrs)

Monochromatic aberrations, Spherical aberration, Methods of minimizing spherical aberration, Coma, Astigmatism and Curvature of field, Distortion; Chromatic aberration-the achromatic doublet; Achromatism for two lenses (i) in contact and (ii) separated by a distance. **Fibre optics:** Introduction to Fibers, different types of fibers, rays and modes in an optical fiber, Principles of fiber communication (qualitative treatment only), Advantages of fiber optic communication.

UNIT V: Lasers and Holography:(12hrs)

Lasers: Introduction, Spontaneous emission, stimulated emission, Population Inversion, Laser principle, Einstein coefficients, Types of lasers-He-Ne laser, Ruby laser, Applications of lasers; Holography: Basic principle of holography, Applications of holography

S.V.K.P. & Dr.K.S.RAJU A&S COLLEGE(A), PENUGONDA-534320.

II B.Sc.: Physics Semester-III

Paper III - Heat and Thermodynamics

B Sc	Semester: 3	Credits: 4
Course: 3	Heat and thermodynamics	Hrs/Wk: 4

Student able to Learning:

- Students will be able to Perform experiments and interpret the results of observation, including
 making an assessment of experimental uncertainties.
- They develop the ability to apply the knowledge acquired in the classroom and laboratories to specific problems in theoretical and experimental Physics.
- To apply the theories learnt and the skills acquired to solve real time problems
- · To understand the concepts and significance of the various physical phenomena

UNIT I: Kinetic Theory of gases: (12 hrs)

Kinetic Theory of gases-Introduction, Maxwell's law of distribution of molecular velocities (qualitative treatment only) and its experimental verification, Mean free path, Degrees of freedom, Principle of equipartition of energy (Qualitative ideas only), Transport phenomenon in ideal gases: viscosity, Thermal conductivity and diffusion of gases.

Additional inputs: Different types of speeds possessed by gas.

UNIT II: Thermodynamics: (12hrs)

Introduction- Isothermal and Adiabatic processes, Reversible and irreversible processes, Carnot's engine and its efficiency, Carnot's theorem, Thermodynamic scale of temperature and its identity with perfect gas scale, Second law of thermodynamics: Kelvin's and Clausius statements, Principle of refrigeration, Entropy, Physical significance, Change in entropy in reversible and irreversible processes; Entropy and disorder-Entropy of Universe; Temperature-Entropy (T-S) diagram and its uses; change of entropy when ice changes into steam.

Additional inputs: Zeroth law of thermodynamics.

UNIT III: Thermodynamic Potentials and Maxwell's equations: (12hrs)

Thermodynamic potentials-Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy and their significance, Derivation of Maxwell's thermodynamic relations from thermodynamic potentials, Applications to (i) Clausius-Clapeyron's equation (ii) Value of CP-CV (iii) Value of CP/CV (iv) Joule-Kelvin coefficient for ideal gases.

UNIT IV: Low temperature Physics:(12hrs) Methods for producing very low temperatures, Joule Kelvin effect, Porous plug experiment, Joule expansion, Distinction between adiabatic and Joule Thomson expansion, Expression for Joule Thomson cooling, Liquefaction of air by Linde's method, Production of low temperatures by adiabatic demagnetization (qualitative), Practical applications of substances at low temperatures.

UNIT V: Quantum theory of radiation: (12 hrs) Blackbody and its spectral energy distribution of black body radiation, Kirchoff's law, Wein's displacement law, Stefan-Boltzmann's law and Rayleigh-Jean's law (No derivations), Planck's law of black body radiation-Derivation, Deduction of Wein's law and Rayleigh-Jean's law from Planck's law, Solar constant and its determination using Angstrom pyroheliometer, Estimation of surface temperature of Sun.

S.V.K.P. & Dr.K.S.RAJU A&S COLLEGE(A), PENUGONDA-534320.

II B.Sc.: Physics Semester-IV(A)

Paper IV(A) - Electricity, Magnetism & Electronics

B Sc	Semester: 4	Credits: 4
Course: 4	Electricity, Magnetism & Electronics	Hrs/Wk: 4

Student Able learn:

- To learn about Gauss law and solve the electric field and magnetic field for various geometric objects and to learn basic electronic concepts in analog and digital theory.
- To be Explain all the topics of Experiments, Concepts and Derivations to the student
- Apply the principles of electronics in day to day life.
- Encourage all the students to study higher educational courses in reputed institutes and to enrich the students with creative, logical and analytical skills and to motivate the students towards research side

UNIT I:

Electrostatics: (6hrs): Gauss's law-Statement and its proof, Electric field intensity due to (i) uniformly charged solid sphere and (ii) an infinite conducting sheet of charge, Deduction of Coulomb's law from Gauss law, Electrical potential—Equipotential surfaces, Potential due to a uniformly charged sphere.

Additional inputs: Electric potential due to a point charge.

Dielectrics: (6 hrs): Dielectrics-Polar and Non-polar dielectrics- Effect of electric field on dielectrics, Dielectric strength, Capacitance of a parallel plate condenser with dielectric slab between the plates, Electric displacement D, electric polarization P, Relation between D, E and P, Dielectric constant and electric susceptibility.

UNIT II:

Magnetostatics: (6 hrs): Biot-Savart's law and its applications: (i) circular loop and (ii) solenoid, Ampere's Circuital Law and its application to Solenoid, Hall effect, determination of Hall coefficient and applications.

Electromagnetic Induction: (6 hrs): Faraday's laws of electromagnetic induction, Lenz's law, Self induction and Mutual induction, Self inductance of a long solenoid, Mutual inductance of two coils, Energy stored in magnetic field, Eddy currents.

Additional inputs: Coefficient of coupling.

UNIT III:

Alternating currents: (6 hrs): Alternating current - Relation between current and voltage in L,C, R, LR and CR circuits, Phasor and Vector diagrams, LCR series and parallel resonant circuit, Q – factor, Power factor.

Electromagnetic waves-Maxwell's equations:(6 hrs): Idea of displacement current, Maxwell's equations-Derivation, Maxwell's wave equation (with derivation), Transverse nature of electromagnetic waves, Poynting theorem (Statement and proof). Velocity of wave equation using Maxwell's relations in vacuum.

UNIT IV:

Basic Electronic devices: (12 hrs): PN junction diode, Zener diode and Light Emitting Diode (LED) and their I-V characteristics, Zener diode as a regulator- Transistors and its operation, CB, CE and CC configurations, Input and output characteristics of a transistor in CE mode, Relation between alpha, beta and gamma; Transistor as an amplifier.

UNIT-V:

Digital Electronics: (12 hrs): Number systems, Conversion of binary to decimal system and vice versa, Binary addition & Binary subtraction (1's and 2's complement methods), Laws of Boolean algebra, DeMorgan's laws-Statements and Proofs, Basic logic gates, NAND and NOR as universal gates, Exclusive-OR gate, Half adder and Full adder circuits.

S.V.K.P. & Dr.K.S.RAJU A&S COLLEGE(A), PENUGONDA-534320.

III B.Sc.: Physics Semester-IV(B)

Paper IV(B) - MODERN PHYSICS

		Credits: 4
B Sc	Semester: 4	Hrs/Wk: 4
Course: 5	Modern Physics	TIIS/ VV IX.

Student able learn:

- To Create awareness on the topics of Atomic & Molecular Physics, Quantum mechanics, Nuclear Physics, and Solid state physics.
- To be Explain all the topics of Experiments, Concepts and Derivations to the student.
- Explain the basic principles of quantum mechanics and apply to Atomic, Molecular structure of energy levels etc..
- Motivate all the students to pursue PG courses in reputed institutes and to endow the students with creative and analytical skills; this will equip them to become entrepreneurs.

Atomic and Molecular Physics:(12 hrs): Vector atom model and Stern-Gerlach experiment, Quantum numbers associated with it, Angular momentum of the atom, Coupling schemes, Spectral terms and spectral notations, Selection rules, Intensity rules, Fine structure of Sodium D-lines, Zeeman effect, Experimental arrangement to study Zeeman effect; Raman effect, Characteristics of Raman effect. Experimental arrangement to study Raman effect, Quantum theory of Raman effect, Applications of Raman effect.

Additional inputs: Symmetry of Raman lines.

Matter waves &Uncertainty Principle:(12 hrs): Matter waves, de Broglie's hypothesis, Wave length of matter waves, Properties of matter waves, Davisson and Germer's experiment, Phase and group velocities, Heisenberg's uncertainty principle for position and momentum& energy and time, Illustration of uncertainty principle using diffraction of beam of electrons and photons (Gamma ray microscope), Bohr's principle of complementarity.

UNIT III:

Quantum (Wave) Mechanics:(12 hrs): Basic postulates of quantum mechanics, Schrodinger time independent and time dependent wave equations-Derivations, Physical interpretation of wave function, Eigen functions, Eigen values, Application of Schrodinger wave equation to (i) one dimensional potential box of infinite height (Infinite Potential Well) and (ii) three dimensional box tunneling effect.

UNIT IV:

Nuclear Physics:(12 hrs): Nuclear Structure: General Properties of Nuclei, Mass defect, Binding energy; Nuclear forces: Characteristics of nuclear forces- Yukawa's meson theory; Nuclear Models: Liquid drop model, The Shell model, Magic numbers; Nuclear Radiation detectors: G.M. Counter, Cloud chamber, Solid State detector; Elementary Particles: Elementary Particles and their classification.

Additional inputs: Scintillation counter.

UNIT-V:

Nano materials:(7hrs): Nanomaterials – Introduction, Electron confinement, Size effect, Surface to volume ratio, Classification of nano materials- (0D, 1D, 2D); Quantum dots, Nano wires, Fullerene, CNT, Graphene(Mention of structures and properties), Distinct properties of nano materials (Mention-mechanical, optical, electrical, and magnetic properties); Mention of applications of nano materials: (Fuel cells, Phosphors for HD TV).

Superconductivity:(5hrs): Introduction to Superconductivity, Experimental results-critical temperature, critical magnetic field, Meissner effect, Isotope effect, Type I and Type II superconductors, BCS theory (elementary ideas only), Applications of superconductors

website:www.svkpandksrajucollege.edu.in Phone: 08819 - 246126 / 246926

S.V.K.P. & Dr. K.S. RAJU ARTS & SCIENCE COLLEGE

(Autonomous)

Recognized by UGC as "College with Potential for Excellence"
Accredited by NAAC with "A" Grade

[Affiliated to ADIKAVI NANNAYA UNIVERSITY - Recognised by Govt. of Andhra Pradesh)

PENUGONDA-534 320, West Godavari District., (A.P.)

For 2022-2023 Batch [2020-21 Batch onwards] SEMESTER - V PAPER - VI B (6B) III B.Sc.: PHYSICS SYLLABUS UNDER CBCS LOW TEMPERATURE PHYSICS & REFRIGERATION

B Sc	Semester V (Skill Enhancement Course -Elective)	Credits: 4
Course: 6B	Low Temperature Physics & Refrigeration	Hrs/Wk: 4

Learning Outcomes: Students after successful completion of the course will be able to

- 1. Identify various methods and techniques used to produce low temperatures in the Laboratory.
- 2. Acquire a critical knowledge on refrigeration and air conditioning.
- 3. Demonstrate skills of Refrigerators through hands on experience and learns about refrigeration components and their accessories.
- 4. Understand the classification, properties of refrigerants and their effects on environment.
- 5. Comprehend the applications of Low Temperature Physics and refrigeration.

Syllabus: (Total Hours: 90 including Teaching, Lab, Field Training, Unit tests etc.)

UNIT I: PRODUCTION OF LOW TEMPERATURE

(10 hrs)

Production of low temperatures-Introduction, Freezing mixtures, Joule-Thomson effect, Regenerative cooling, Different methods of liquefaction of gases, liquefaction of air, Production of liquid hydrogen, liquefaction of helium, Adiabatic demagnetization, Properties of materials at low temperatures, Superconductivity.

UNIT II: MEASUREMENT OF LOW TEMPERATURE

(10 hrs)

Gas thermometer and its correction and calibration, Secondary thermometers, resistance thermometers, thermocouples, Vapour pressure thermometers, Magnetic thermometers, Advantages and drawbacks of each type of thermometer.

UNIT III: PRINCIPLES OF REFRIGERATION

(10 hrs)

Introduction to Refrigeration- Natural and artificial refrigeration, Stages of refrigeration, Types of refrigeration - Vapor compression and vapor absorption refrigeration systems, Refrigeration cycle and explanation with a block diagram, Introductory ideas on air- conditioning.

Refrigerants-Introduction, Ideal refrigerant, Properties of refrigerant, Classification of refrigerants, commonly used refrigerants, Eco-friendly refrigerants.

UNIT IV: COMPONENTS OF REFRIGERATOR

(10 hrs)

Refrigerator and its working, Block diagram, Coefficient of Performance (COP), Tons of refrigeration (TR) and Energy Efficiency Ratio (EER), Refrigerator components: Types of compressors, evaporators and condensers and their functional aspects, defrosting in a refrigerator, Refrigerant leakage and detection

UNIT V: APPLICATIONS OF LOW TEMPERATURE & REFRIGERATION (10 hrs)

Applications of Low temperatures: Preservation of biological material, Food freezing, liquid nitrogen and liquid hydrogen in medical field, Superconducting magnets in MRI- Tissue ablation (cryosurgery) - Cryogenic rocket propulsion system.

Applications of refrigeration: Domestic refrigerators, Water coolers, Cold storages, Ice plants, Food preservation methods, Chemical and Process industries, Cold treatment of metals, Construction field, Desalination of water, Data canters.

REFERENCE BOOKS:

- 1. Heat and Thermodynamics by Brij Lal &N.Subramanyam, S.Chand Publishers.
- 2. Thermal Physics by S C Garg, R M Bansal & C K Ghosh, McGrawHill Education, India
- 3. Heat and Thermodynamics by M MZemansky, McGrawHill Education (India).
- 4. Low-Temperature Physics by Christian E. & Siegfried H., Springer.
- 5. Thermal Engineering by S. Singh, S.Pati, Ch:18 Introduction to Refrigeration.
- 6. The Physics Hyper Text Book. Refrigerators.https://physics.info/refrigerators/
- 7. Refrigeration and Air Conditioning by Manohar Prasad, New age international (P) limited, New Delhi
- 8. A course in Refrigeration and Air Conditioning by S.C. Arora and S. Domkundwar, Dhanpatrai and sons, Delhi
- https://trc.nist.gov/cryogenics/Papers/Review/2017-Low Temperature Applications and Challenges.pdf
- 10. https://nptel.ac.in/content/storage2/courses/112105129/pdf/RAC%20Lecture%203.pdf
 11.Other Web sources suggested by the teacher concerned and the reading material.https://nptel.ac.in

Phone: 08819 - 246126 / 246926

S.V.K.P. & Dr. K.S. RAJU ARTS & SCIENCE COLLEGE

(Autonomous)

Recognized by UGC as "College with Potential for Excellence"

Accredited by NAAC with "A" Grade

[Affiliated to ADIKAVI NANNAYA UNIVERSITY - Recognised by Govt. of Andhra Pradesh)

PENUGONDA-834 320, West Godavari District., (A.P.)

For 2022-2023 Batch [2020-21 Batch onwards] SEMESTER - V PAPER - VII B (7B) III B.Sc.: PHYSICS SYLLABUS UNDER CBCS

B Sc	Semester V (Skill Enhancement Course - Elective)	Credits: 4
Course: 7B	Solar Energy and Applications	Hrs/Wk: 4

Learning Outcomes: After successful completion of the course, the student will be able to:

- 1. Understand Sun structure, forms of energy coming from the Sun and its measurement.
- 2. Acquire a critical knowledge on the working of thermal and photovoltaic collectors.
- 3. Demonstrate skills related to callus culture through hands on experience
- 4. Understand testing procedures and fault analysis of thermal collectors and PV modules.
- 5. Comprehend applications of thermal collectors and PV modules.

Syllabus: (Total Hours: 90 including Teaching, Lab, Field Training, Unit tests etc.)

UNIT I: BASIC CONCEPTS OF SOLAR ENERGY

(10HRS)

Spectral distribution of solar radiation, Solar constant and its determination, zenith angle and Air-Mass, inclination angle, declination angle . Direct, diffuse and total radiations. Pyrheliometer - working principle, direct radiation measurement, Pyranometer-working Principle, diffuse radiation measurement, Distinction between the two meters.

Additional inputs: Hour angle

UNIT II: SOLAR THERMAL COLLECTORS

(10hrs)

Solar Thermal Collectors-Introduction, Performance indices of a collector-collector efficiency ,concetration ratio, Temperature range. Types of Thermal collectors, Flat balance Energy - liquid heating type, efficiency, Concentrating collectors, Evacuated tube collector. Solar Thermal power generation. solar water heating system, natural and forced circulation types. Solar cookers, Solar dryers, Solar desalinators.

Additional inputs: Solar green houses.

UNIT III: FUNDAMENTALS OF SOLAR CELLS

(10Hrs)

Semiconductor interface, Types, homo junction, hetero junction and Schottky barrier, advantages and drawbacks, Physics of solar cell, photovoltaic effect, equivalent circuit, output parameters, , Measurement of I-V characteristics, series and shunt resistance, their effect on efficiency, Effect of temperature and band gap on efficiency.

UNIT IV: TYPES OF SOLARCELLS AND MODULES

(10 hrs)

Types of solar cells, Crystalline silicon solar cells, I-V characteristics, poly-Si cells, Thin film solar cells-CdTe/CdS and CuInGaSe2/CdS cell configurations, structures, advantages and limitations, Solar PV Module and its components

Module fabrication steps, Modules in series and parallel, Bypass and blocking diodes .

Additional inputs: Solar PV module protection.

UNIT V: SOLAR PHOTOVOLTAIC SYSTEMS

(10hrs)

Energy storage in PV systems, Need of energy storage, Energy storage modes, electrochemical storage, Batteries, Primary and secondary, Solid-state battery,, lead acid battery and Nickel-Cadmium battery, Mechanical storage - Flywheel, Electrical storage - Super capacitor, Comparision between capacitor and battery

REFERENCES BOOKS:

- 1. Solar Energy Utilization by G. D. Rai, Khanna Publishers
- 2. Solar Energy- Fundamentals, design, modelling and applications by G.N. Tiwari, Narosa Publications, 2005.
- 3. Solar Energy-Principles of thermal energy collection & storage by S.P. Sukhatme, Tata Mc-Graw Hill Publishers, 1999.
- 4. Science and Technology of Photovoltaics, P. Jayarama Reddy, CRC Press (Taylor & Francis Group), Leiden &BS Publications, Hyderabad, 2009.
- 5. Solar Photovoltaics- Fundamentals, technologies and applications, Chetan Singh Solanki, PHI Learning Pvt. Ltd.,
- 6. Web sources suggested by the teacher concerned and the college librarian including reading material.